Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 17 trang 102 SBT Toán 9 Tập 2: Chứng minh rằng...

Câu 17 trang 102 SBT Toán 9 Tập 2: Chứng minh rằng AB.AB = AD.AE....

Chứng minh rằng AB.AB = AD.AE.. Câu 17 trang 102 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 3: Góc nội tiếp

Cho đường tròn (O) và hai dây AB, AC bằng nhau. Qua A vẽ một cát tuyến cắt dây BC ở D và cắt đường tròn (O) ở E. Chứng minh rằng \(A{B^2} = AD.AE\).

Giải

AB = AC (gt)

\(\overparen{AB}\) = \(\overparen{AC}\) (hai dây bằng nhau căng 2 cung bằng nhau)

\( \Rightarrow \widehat {ABC} = \widehat {AEB}\) (2 góc nội tiếp chắn 2 cung bằng nhau)

Advertisements (Quảng cáo)

Xét ∆ABD và ∆ABE:

\(\widehat A\) chung

\(\widehat {ABC} = \widehat {AEB}\) (chứng minh trên)

Hay \(\widehat {ABD} = \widehat {AEB}\)

Suy ra: ∆ABD đồng dạng ∆AEB

\({{AE} \over {AB}} = {{AB} \over {AD}} \Rightarrow {\rm A}{{\rm B}^2} = AD.AE\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)