Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 18 trang 102 SBT Toán 9 Tập 2: Chứng minh rằng...

Câu 18 trang 102 SBT Toán 9 Tập 2: Chứng minh rằng tích MA.MB không đổi....

Chứng minh rằng tích MA.MB không đổi.. Câu 18 trang 102 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 3: Góc nội tiếp

Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M vẽ một cát tuyến bất kì cắt đường tròn ở A và B. Chứng minh rằng tích MA.MB không đổi.

Giải

Trường hợp M ở bên trong đường tròn (O)

Kẻ cát tuyến AB bất kỳ và kẻ đường thẳng MO cắt đường tròn tại C và D.

Xét hai ∆MAC và ∆MBD:

\(\widehat {AMC} = \widehat {BMD}\) (đối đỉnh)

\(\widehat A = \widehat D\) (hai góc nội tiếp cùng chắn cung \(\overparen{BC}\)

Suy ra: ∆MAC đồng dạng ∆MDB (g.g)

\( \Rightarrow {{MB} \over {MC}} = {{MD} \over {MA}}\)

\( \Rightarrow MA.MB = MC.MD\)            (1)

Vì M, O cố định suy ra điểm C và D cố định nên độ dài của các đoạn MC và MD không đổi \( \Rightarrow \) tích MC.MD không đổi              (2)

Advertisements (Quảng cáo)

Từ (1) và (2) suy ra tích MA. MB không đổi khi cát tuyến AB thay đổi.

Trường hợp điểm M ở ngoài đường tròn (O)

Kẻ cát tuyến MAB bất kỳ của (O) và đường thẳng MO cắt đường tròn (O) tại C và D

Xét ∆MAD và ∆MCB:

\(\widehat M\) chung

\(\widehat B = \widehat D\) (hai góc nội tiếp cùng chắn cung \(\overparen{AC}\))

Suy ra: ∆MAD đồng dạng ∆MCB (g.g)

\( \Rightarrow {{MC} \over {MA}} = {{MB} \over {MD}} \Rightarrow MA.MB = MC.MD\)               (3)

Vì M và O cố định suy ra điểm C, D cố định nên độ dài của các đoạn MC và MD không đổi \( \Rightarrow \) tích MC. MD không đổi   (4)

Từ (3) và (4) suy ra tích MA. MB không đổi khi cát tuyến MAB thay đổi.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)