Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 18 trang 52 Sách bài tập Toán 9 tập 2: Giải...

Câu 18 trang 52 Sách bài tập Toán 9 tập 2: Giải các phương trình sau bằng cách biến đổi...

Giải các phương trình sau bằng cách biến đổi chúng.. Câu 18 trang 52 Sách bài tập (SBT) Toán 9 tập 2 - Bài 3. Phương trình bậc hai một ẩn

Giải các phương trình sau bằng cách biến đổi chúng thành những phương trình với vế trái là một bình phương còn vế phải là một hằng số:

a) \({x^2} - 6x + 5 = 0\)

b) \({x^2} - 3x - 7 = 0\)

c) \(3{x^2} - 12x + 1 = 0\)

d) \(3{x^2} - 6x + 5 = 0\)

a) \({x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2.3x + 9 = 4 \Leftrightarrow {\left( {x - 3} \right)^2} = 4\)

\( \Leftrightarrow \left| {x - 3} \right| = 2\) \( \Leftrightarrow x - 3 = 2\) hoặc \(x - 3 =  - 2\)⇔ x = 5 hoặc x = 1

Vậy phương trình có hai nghiệm: \({x_1} = 5;{x_2} = 1\)

b)\({x^2} - 3x - 7 = 0 \Leftrightarrow {x^2} - 2.{3 \over 2}x + {9 \over 4} = 7 + {9 \over 4} \Leftrightarrow {\left( {x - {3 \over 2}} \right)^2} = {{37} \over 4}\)

\( \Leftrightarrow \left| {x - {3 \over 2}} \right| = {{\sqrt {37} } \over 2} \Leftrightarrow x - {3 \over 2} = {{\sqrt {37} } \over 2}\) hoặc \(x - {3 \over 2} =  - {{\sqrt {37} } \over 2}\)

\( \Leftrightarrow x = {{3 + \sqrt {37} } \over 2}\) hoặc \(x = {{3 - \sqrt {37} } \over 2}\)

Advertisements (Quảng cáo)

Vậy phương trình có hai nghiệm: \({x_1} = {{3 + \sqrt {37} } \over 2};{x_2} = {{3 - \sqrt {37} } \over 2}\)

c)

\(\eqalign{
& 3{x^2} - 12x + 1 = 0 \Leftrightarrow {x^2} - 4x + {1 \over 3} = 0 \cr
& \Leftrightarrow {x^2} - 2.2x + 4 = 4 - {1 \over 3} \cr
& \Leftrightarrow {\left( {x - 2} \right)^2} = {{11} \over 3} \Leftrightarrow \left| {x - 2} \right| = {{\sqrt {33} } \over 3} \cr} \)

\( \Leftrightarrow x - 2 = {{\sqrt {33} } \over 3}\) hoặc \(x - 2 =  - {{\sqrt {33} } \over 3}\)

\( \Leftrightarrow x = 2 + {{\sqrt {33} } \over 3}\) hoặc \(x = 2 - {{\sqrt {33} } \over 3}\)

Vậy phương trình có hai nghiệm: \({x_1} = 2 + {{\sqrt {33} } \over 3};{x_2} = 2 - {{\sqrt {33} } \over 3}\)

d)

\(\eqalign{
& 3{x^2} - 6x + 5 = 0 \Leftrightarrow {x^2} - 2x + {5 \over 3} = 0 \cr
& \Leftrightarrow {x^2} - 2x + 1 = 1 - {5 \over 3} \cr
& \Leftrightarrow {\left( {x - 1} \right)^2} = - {2 \over 3} \cr} \)

Vế trái \({\left( {x - 1} \right)^2} \ge 0\); vế phải \( - {2 \over 3} < 0\)

Vậy không có giá trị nào của x để \({\left( {x - 1} \right)^2} =  - {2 \over 3}\)

Phương trình vô nghiệm. 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)