Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 21 trang 102 SBT Toán lớp 9 Tập 2: Hãy tính...

Câu 21 trang 102 SBT Toán lớp 9 Tập 2: Hãy tính các góc của tam giác DEF....

Hãy tính các góc của tam giác DEF. Câu 21 trang 102 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 3: Góc nội tiếp

Cho tam giác ABC nội tiếp trong đường tròn tâm O, biết \(\widehat A = {32^0}\), \(\widehat B = {84^0}\). Lấy các điểm D, E, F thuộc đường tròn tâm O sao cho AD = AB, BE = BC, CF = CA. Hãy tính các góc của tam giác DEF.

Giải

 

\(\widehat A = {1 \over 2}\)  sđ \(\overparen{BC}\) (tính chất góc nội tiếp)

\( \Rightarrow \) sđ \(\overparen{BC}\) \( = 2\widehat A = {2.32^0} = {64^0}\)

BC = BE (gt)

\( \Rightarrow \) sđ \(\overparen{BC}\) = sđ \(\overparen{BE}\) = 640

\(\widehat B = {1 \over 2}\) sđ \(\overparen{AC}\) (tính chất góc nội tiếp)

\( \Rightarrow \) sđ \(\overparen{AC}\) \( = 2\widehat B = {2.84^0} = {168^0}\)

AC = CF (gt)

\( \Rightarrow \) sđ \(\overparen{CF}\) =  sđ \(\overparen{AC}\) = 1680

 sđ \(\overparen{AC}\) +  sđ \(\overparen{AF}\) +  sđ \(\overparen{CF}\) = 3600

\( \Rightarrow \) sđ \(\overparen{AF}\) \( = {360^0} - \)  sđ \(\overparen{AC}\) -  sđ \(\overparen{CF}\) = 3600 – 1680. 2 = 240

Advertisements (Quảng cáo)

Trong ∆ABC ta có: \(\widehat A + \widehat B + \widehat C = {180^0}\)

\( \Rightarrow \widehat {ACB} = {180^0} - \left( {\widehat A + \widehat B} \right)\)

              = \({180^0} - \left( {{{32}^0} + {{84}^0}} \right) = {64^0}\)

 sđ \(\widehat {ACB} = {1 \over 2}\) sđ \(\overparen{AB}\)

\( \Rightarrow \) sđ \(\overparen{AB}\) \( = 2\widehat {ACB} = {2.64^0} = {128^0}\)

AD = AB (gt)

\( \Rightarrow \) sđ \(\overparen{AD}\) =  sđ \(\overparen{AB}\) = 1280

\(\widehat {FED} = {1 \over 2}\) sđ \(\overparen{DF}\) \( = {1 \over 2}\) ( sđ \(\overparen{AD}\) +  sđ \(\overparen{AF}\))

            = \({1 \over 2}.\left( {{{128}^0} + {{24}^0}} \right) = {76^0}\)

\(\widehat {EDF} = {1 \over 2}\) sđ \(\overparen{EF}\) = \({1 \over 2}\) ( sđ \(\overparen{AB}\) -  sđ \(\overparen{AF}\) -  sđ \(\overparen{BE}\)

            = \({1 \over 2}.\left( {{{128}^0} - {{24}^0} - {{64}^0}} \right) = {20^0}\)

\(\widehat {DFE} = {180^0} - \left( {\widehat {FED} + \widehat {EDF}} \right)\)

            = \({180^0} - \left( {{{76}^0} + {{20}^0}} \right) = {84^0}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: