Đối với mỗi phương trình sau, hãy tìm các giá trị của m để phương trình có nghiệm; tính nghiệm của phương trình theo m:
a) \(m{x^2} + \left( {2x - 1} \right)x + m + 2 = 0\)
b) \(2{x^2} - \left( {4m + 3} \right)x + 2{m^2} - 1 = 0\)
a) \(m{x^2} + \left( {2m - 1} \right)x + m + 2 = 0\)
Nếu m = 0 ta có phương trình: \( - x + 2 = 0 \Leftrightarrow x = 2\)
Advertisements (Quảng cáo)
Nếu m ≠ 0 phương trình có nghiệm khi và chỉ khi \(\Delta \ge 0\)
\(\eqalign{
& \Delta = {\left( {2m - 1} \right)^2} - 4m\left( {m + 2} \right) \cr
& = 4{m^2} - 4m + 1 - 4{m^2} - 8m \cr
& = - 12m + 1 \cr
& \Delta \ge 0 \Rightarrow - 12m + 1 \ge 0 \Leftrightarrow m \le {1 \over {12}} \cr
& \sqrt \Delta = \sqrt {1 - 12m} \cr
& {x_1} = {{ - \left( {2m - 1} \right) + \sqrt {1 - 12m} } \over {2.m}} = {{1 - 2m + \sqrt {1 - 12m} } \over {2m}} \cr
& {x_2} = {{ - \left( {2m - 1} \right) - \sqrt {1 - 12m} } \over {2.m}} = {{1 - 2m - \sqrt {1 - 12m} } \over {2 + }} \cr} \)
b) \(2{x^2} - \left( {4m + 3} \right)x + 2{m^2} - 1 = 0\)
Phương trình có nghiệm khi và chỉ khi \(\Delta \ge 0\)
\(\eqalign{
& \Delta = {\left[ { - \left( {4m + 3} \right)} \right]^2} - 4.2\left( {2{m^2} - 1} \right) \cr
& = 16{m^2} + 24m + 9 - 16{m^2} + 8 \cr
& = 24m + 17 \cr
& \Delta \ge 0 \Rightarrow 24m + 17 \ge 0 \Leftrightarrow m > - {{17} \over {24}} \cr
& \sqrt \Delta = \sqrt {24m + 17} \cr
& {x_1} = {{4m + 3 + \sqrt {24m + 17} } \over 4} \cr
& {x_2} = {{4m + 3 - \sqrt {24m + 17} } \over 4} \cr} \)