Rút gọn các biểu thức:
a) \(\sqrt {4{{(a - 3)}^2}} \) với a ≥ 3 ;
b) \(\sqrt {9{{(b - 2)}^2}} \) với b < 2 ;
c) \(\sqrt {{a^2}{{(a + 1)}^2}} \) với a > 0 ;
d) \(\sqrt {{b^2}{{(b - 1)}^2}} \) với b < 0 .
Advertisements (Quảng cáo)
Gợi ý làm bài
a) \(\eqalign{
& \sqrt {4{{(a - 3)}^2}} = \sqrt 4 .\sqrt {{{(a - 3)}^2}} \cr
& = 2.\left| {a - 3} \right| = 2(a - 3) \cr} \) (với a ≥ 3)
b) \(\eqalign{
& \sqrt {9{{(b - 2)}^2}} = \sqrt 9 \sqrt {{{(b - 2)}^2}} \cr
& = 3.\left| {b - 2} \right| = 3(2 - b) \cr} \) (với b < 2)
c) \(\eqalign{
& \sqrt {{a^2}{{(a + 1)}^2}} = \sqrt {{a^2}} .\sqrt {{{(a + 1)}^2}} \cr
& = \left| a \right|.\left| {a + 1} \right| = a(a + 1) \cr} \) (với a > 0)
d) \(\eqalign{
& \sqrt {{b^2}{{(b - 1)}^2}} = \sqrt {{b^2}} .\sqrt {{{(b - 1)}^2}} \cr
& = \left| b \right|.\left| {b - 1} \right| = - b(1 - b) \cr} \) (với b < 0)