Rút gọn các biểu thức:
a) \({{\sqrt {63{y^3}} } \over {\sqrt {7y} }}\) (y>0);
b) \({{\sqrt {48{x^3}} } \over {\sqrt {3{x^5}} }}\) (x > 0);
c) \({{\sqrt {45m{n^2}} } \over {\sqrt {20m} }}\) (m > 0 và n > 0);
d) \({{\sqrt {16{a^4}{b^6}} } \over {\sqrt {128{a^6}{b^6}} }}\) (a < 0 và b ≠ 0).
Gợi ý làm bài
Advertisements (Quảng cáo)
a) \(\eqalign{
& {{\sqrt {63{y^3}} } \over {\sqrt {7y} }} = \sqrt {{{63{y^3}} \over {7y}}} = \sqrt {9{y^2}} \cr
& = \sqrt 9 .\sqrt {{y^2}} = 3.\left| y \right| = 3y \cr} \) (y>0)
b) \(\eqalign{
& {{\sqrt {48{x^3}} } \over {\sqrt {3{x^5}} }} = \sqrt {{{48{x^3}} \over {3{x^5}}}} \cr
& = \sqrt {{{16} \over {{x^2}}}} = {4 \over {\left| x \right|}} = {4 \over x} \cr} \) (x > 0)
c) \(\eqalign{
& {{\sqrt {45m{n^2}} } \over {\sqrt {20m} }} = \sqrt {{{45m{n^2}} \over {20m}}} \cr
& = \sqrt {{{9{n^2}} \over 4}} = {{\sqrt {9{n^2}} } \over {\sqrt 4 }} = {{3\left| n \right|} \over 2} = {{3n} \over 2} \cr} \) (m > 0 và n > 0)
d) \(\eqalign{
& {{\sqrt {16{a^4}{b^6}} } \over {\sqrt {128{a^6}{b^6}} }} = \sqrt {{{16{a^4}{b^6}} \over {128{a^6}{b^6}}}} = \sqrt {{1 \over {8{a^2}}}} \cr
& = {{\sqrt 1 } \over {\sqrt {4{a^2}.2} }} = {1 \over {2\left| a \right|\sqrt 2 }} = {{ - 1} \over {2a\sqrt 2 }} \cr} \)
(a < 0 và b ≠0)