Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 71 trang 113 Sách BT Toán 9 Tập 2: Tính diện...

Câu 71 trang 113 Sách BT Toán 9 Tập 2: Tính diện tích hình hoa thị gạch sọc....

Tính diện tích hình hoa thị gạch sọc.. Câu 71 trang 113 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 10: Diện tích hình tròn hình quạt tròn

Trong một tam giác đều ABC (h.13), vẽ những cung tròn đi qua tâm của tam giác và từng cặp đỉnh của nó. Cho biết cạnh tam giác bằng a, tính diện tích hình hoa thị gạch sọc.

 

Giải

Diện tích hình hoa thị bằng tổng diện tích 3 hình viên phân trừ diện tích tam giác đều ABC.

Gọi O là tâm của tam giác đều ABC

\( \Rightarrow OA = OB = OC\)

Vì ∆ABC đều nên AO, BO, CO là phân giác của các góc \(\widehat A,\widehat B,\widehat C\)

\(\widehat {OAC} = \widehat {OCA} = {{{{60}^0}} \over 2} = {30^0}\)

\(\widehat {AOC} = {180^0} - \left( {{{30}^0} + {{30}^0}} \right) = {120^0}\)

\( \Rightarrow \) sđ \(\overparen{AOC}\) là tam giác đều nội tiếp trong đường tròn (O’; R)

Trong tam giác O’HA có \(\widehat {O’HA} = {90^0}\), \(\widehat {HO’A} = {60^0}\)

AH = R.sin \(\widehat {HO’A} = R\). sin 600 = \({{R\sqrt 3 } \over 2}\)

Advertisements (Quảng cáo)

AC = 2AH = \(R\sqrt 3 \)

\( \Rightarrow R = {{AC} \over {\sqrt 3 }} = {a \over {\sqrt 3 }} = {{a\sqrt 3 } \over 3}\)

Squạt = \({{\pi {{\left( {{{a\sqrt 3 } \over 3}} \right)}^2}.120} \over {360}}\)

            = \({{\pi {{{a^2}} \over 3}} \over 3} = {{\pi {a^2}} \over 9}\) (đơn vị diện tích)

∆O’HA có \(\widehat {O’HA} = {90^0}\); \(\widehat {HO’A} = {60^0}\)

O’A = \(R.\cos {60^0} = {{a\sqrt 3 } \over 3}.{1 \over 2} = {{a\sqrt 3 } \over 6}\)

SO’CA = \({1 \over 2}O’H.AC = {1 \over 2}.{{a\sqrt 3 } \over 6}.a = {{{a^2}\sqrt 3 } \over {12}}\) (đơn vị diện tích)

Sviên phân  = Squạt – SO’CA = \({{\pi {a^2}} \over 9} - {{{a^2}\sqrt 3 } \over {12}} = {{4\pi {a^2} - 3{a^2}\sqrt 3 } \over {36}}\)

Diện tích tam giác đều ABC cạnh a: SABC  = \({{{a^2}\sqrt 3 } \over 4}\) (đơn vị diện tích)

Diện tích hình hoa thị là:

S = 3S­viên phân  - SABC  = \(3.{{4\pi {R^2} - 3{a^2}\sqrt 3 } \over {36}} - {{{a^2}\sqrt 3 } \over 4}\)

                                   = \({{4\pi {a^2} - 3{a^2}\sqrt 3 } \over {12}} - {{3{a^2}\sqrt 3 } \over {12}}\)

                                    = \({{4\pi {a^2} - 6{a^2}\sqrt 3 } \over {12}} = {{{a^2}} \over 6}\left( {2\pi  - 3\sqrt 3 } \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: