Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 20 trang 112 Tài liệu dạy và học Toán 9 tập...

Bài 20 trang 112 Tài liệu dạy và học Toán 9 tập 2: Từ điểm A trên nửa đường tròn (O) đường kính BC, vẽ ra ngài tam giác ABC hai nửa đường tròn...

Bài tập - Chủ đề 4 : Chu vi và diện tích hình tròn - Bài 20 trang 112 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Từ điểm A trên nửa đường tròn (O) đường kính BC, vẽ ra ngài tam giác ABC hai nửa đường tròn

Từ điểm A trên nửa đường tròn (O) đường kính BC, vẽ ra ngài tam giác ABC hai nửa đường tròn đường kính AB và AC (AB<AC, xem hình vẽ). Chứng minh rằng: diện tích S của tam giác ABC bằng tổng hai diện tích S1 và S2 của hai hình trăng khuyết là phần của hai nửa đường tròn đường kính AB và AC ở ngoài nửa đường tròn đường kính BC.

 

Sử dụng công thức tính diện tích hình tròn và định lí Pytago.

 

Advertisements (Quảng cáo)

Diện tích nửa hình tròn đường kính AB là \(\pi {\left( {\dfrac{{AB}}{2}} \right)^2} = {S_1} + {S_3} \Rightarrow {S_1} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} - {S_3}\)

Diện tích nửa hình tròn đường kính AC là \(\pi {\left( {\dfrac{{AC}}{2}} \right)^2} = {S_2} + {S_4} \Rightarrow {S_3} = \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - {S_4}\)

\(\begin{array}{l} \Rightarrow {S_1} + {S_2} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} - {S_3} + \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - {S_4} = \pi {\left( {\dfrac{{AB}}{2}} \right)^2} + \pi {\left( {\dfrac{{AC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right)\\ \Rightarrow {S_1} + {S_2} = \dfrac{\pi }{4}\left( {A{B^2} + A{C^2}} \right) - \left( {{S_3} + {S_4}} \right)\end{array}\)

Diện tích nửa hình tròn đường kính BC là \(\pi {\left( {\dfrac{{BC}}{2}} \right)^2} = {S_3} + {S_4} + S \Rightarrow S = \pi {\left( {\dfrac{{BC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right)\)

Vì \(\widehat {BAC} = {90^0}\) (góc nội tiếp chắn nửa đường tròn) \( \Rightarrow \Delta ABC\) vuông tại A.

Áp dụng định lí Pytago ta có: \(B{C^2} = A{B^2} + A{C^2}\)

\( \Rightarrow {S_1} + {S_2} = \dfrac{\pi }{4}.B{C^2} - \left( {{S_3} + {S_4}} \right) = \dfrac{\pi }{4}{\left( {\dfrac{{BC}}{2}} \right)^2} - \left( {{S_3} + {S_4}} \right) = S\).

Vậy \(S = {S_1} + {S_2}\).

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)