Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 1 trang 113 Dạy và học Toán 9 tập 2: Cho...

Bài 1 trang 113 Dạy và học Toán 9 tập 2: Cho đường tròn (O) đường kính AB và cung AC có số đo nhỏ hơn 90o. Vẽ dây CD vuông góc...

Ôn tập chương 3 - Hình học 9 - Bài 1 trang 113 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Cho đường tròn (O) đường kính AB và cung AC có số đo nhỏ hơn 90o. Vẽ dây CD vuông góc

Cho đường tròn (O) đường kính AB và cung AC có số đo nhỏ hơn 90o. Vẽ dây CD vuông góc với AB và vẽ  dây DE song song với AB. Chứng minh rằng:

a) cung AC= cung BE

b) Ba điểm C, O, E thẳng hàng.

a) Chứng minh cung AC và cung BE cùng bằng cung AD.

b) Chứng minh \(\widehat {CDE} = {90^0} \Rightarrow \widehat {CDE}\) nội tiếp chắn nửa đường tròn.

Advertisements (Quảng cáo)

 

a) Ta có: AB // DE nên cung AD=cung BE (hai cung giữa 2 dây song song).

Gọi \(H = AB \cap CD\). Vì \(AB \bot CD \Rightarrow H\) là trung điểm của CD (quan hệ vuông góc giữa đường kính và dây cung).

\( \Rightarrow AB\) là trung trực của của CD \( \Rightarrow AC = AD\) (điểm thuộc trung trực của đoạn thẳng thì cách đều 2 đầu mút của đoạn thẳng đó).

Cung AC=cung AD (2 dây bằng nhau căng 2 cung bằng nhau).

Vậy cung AC=cung BE.

b) Ta có : DE // AB. Mà \(AB \bot CD \Rightarrow BE \bot CD \Rightarrow \widehat {CDE} = {90^0} \Rightarrow \widehat {CDE}\) nội tiếp chắn nửa đường tròn \( \Rightarrow CE\) là đường kính của đường tròn \(\left( O \right)\).

Vậy C, O, E thẳng hàng.

 

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: