Một hình cầu có số đo diện tích (đơn vị: m2) bằng số đo thể tích (đơn vị: m3). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu.. Bài 18 trang 135 SGK Toán 9 tập 2 - Phần Hình học - Ôn tập cuối năm - Toán 9
Bài 18. Một hình cầu có số đo diện tích (đơn vị: \(m^2\)) bằng số đo thể tích (đơn vị: \(m^3\)). Tính bán kính hình cầu, diện tích mặt cầu và thể tích hình cầu.
Hướng dẫn làm bài:
Gọi \(R\) là bán kính hình cầu (đơn vị : mét)
Khi đó ta có: \(S = 4πR^2\) và \(V = {4 \over 3}\pi {R^3}\)
Advertisements (Quảng cáo)
Theo đề bài ta có: \(4\pi {R^2} = {4 \over 3}\pi {R^3} \Rightarrow {R \over 3} = 1 \Rightarrow R = 3(m)\)
Ta có: \(S = 4πR^2 = 4π . 3^2= 36π\) (\(m^2\))
\(V = {4 \over 3}\pi {R^3} = {4 \over 3}\pi {.3^3} = 36\pi \left( {{m^3}} \right)\).