Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 30 trang 79 sgk Toán lớp 9 tập 2, Bài 30....

Bài 30 trang 79 sgk Toán lớp 9 tập 2, Bài 30. Chứng minh định lí đảo của định lí về góc tạo bởi tia tiếp tuyến và dây cung...

Bài 30. Chứng minh định lí đảo của định lí về góc tạo bởi tia tiếp tuyến và dây cung. Bài 30 trang 79 sgk Toán lớp 9 tập 2 - Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung

Bài 30. Chứng minh định lí đảo của định lí về góc tạo bởi tia tiếp tuyến và dây cung, cụ thể là:

Nếu \(\widehat{ BAx}\) (với đỉnh \(A\) nằm trên một đường tròn, một cạnh chứa dây cung \(AB\)), có số đo bằng nửa số đo của \overparen{AB} căng dây đó và cung này nằm bên trong góc đó thì cạnh \(Ax\) là một tia tiếp tuyến của đường tròn (h.29).

Hướng dẫn giải:

Cách 1( hình a). Chứng minh trực tiếp

Theo giả thiết,

Suy ra: \(\widehat {BAx} = \widehat {{O_1}}\)

Advertisements (Quảng cáo)

Hai góc nhọn này đã có một cặp cạnh vuông góc với nhau ( \(OC \bot AB\) ).

Vậy cặp cạnh kia cũng phải vuông góc, tức là \(OA \bot Ax\). 

Vậy \(Ax\) phải là tiếp tuyến của \((O)\) tại \(A\)

Cách 2 (hình b) Chứng minh bằng phản chứng.

Nếu cạnh kia không phải là tiếp tuyến tại \(A\) mà là cát tuyến đi qua \(A\) và giả sử nó cắt \((O)\) tại \(C\) thì \(\widehat {BAC} \) là góc nội tiếp 

Điều này trái với giả thiết. Vậy cạnh kia không thể là cát tuyến, mà phải là tiếp tuyến \(Ax\)

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)