Bài 43. Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài \(120\) km. Trên đường đi, xuồng có nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường dài hơn đường lúc đi \(5\)km và với vận tốc nhỏ hơn vận tốc lúc đi là \(5\) km/h. Tính vận tốc của xuồng lúc đi, biết rằng thời gian về bằng thời gian đi.
Gọi vận tốc của xuồng lúc đi là \(x\)(km/h), \(x > 0\), thì vân tốc lúc về là \(x - 5\) (km/h).
Vì khi đi có nghỉ 1 giờ nên thời gian khi đi hết tất cả là: \(\frac{120}{x} + 1\) (giờ)
Đường về dài: \(120 + 5 = 125\) (km)
Thời gian về là: \(\frac{125}{x-5}\) (giờ)
Theo đầu bài có phương trình: \(\frac{120}{x} + 1 =\frac{125}{x-5}\)
Advertisements (Quảng cáo)
Giải phương trình:
\(x^2 – 5x + 120x – 600 = 125x \Leftrightarrow x^2 – 10x – 600 = 0\)
∆’ = (-5)2 – 1 . (-600) = 625, √∆’ = 25
\({x_1} = 5 – 25 = -20, {x_2} = 5 + 25 = 30\)
Vì \(x > 0\) nên \({x_1} = -20\) không thỏa mãn điều kiện của ẩn.
Vậy vận tốc của xuồng khi đi là 30 km/h