Bài 9. Tìm x biết:
a) \(\sqrt {{x^2}} = 7\) ;
b) \(\sqrt {{x^2}} = \left| { - 8} \right| \)
c) \(\sqrt {4{{\rm{x}}^2}} = 6\)
d) \(\sqrt {9{{\rm{x}}^2}} = \left| { - 12} \right|\);
Hướng dẫn giải:
a)
Advertisements (Quảng cáo)
\(\eqalign{
& \sqrt {{x^2}} = 7 \cr
& \Leftrightarrow \left| x \right| = 7 \cr
& \Leftrightarrow x = \pm 7 \cr} \)
b)
\(\eqalign{
& \sqrt {{x^2}} = \left| { - 8} \right| \cr
& \Leftrightarrow \left| x \right| = 8 \cr
& \Leftrightarrow x = \pm 8 \cr} \)
c)
\(\eqalign{
& \sqrt {4{{\rm{x}}^2}} = 6 \cr
& \Leftrightarrow \sqrt {{{\left( {2{\rm{x}}} \right)}^2}} = 6 \cr
& \Leftrightarrow \left| {2{\rm{x}}} \right| = 6 \cr
& \Leftrightarrow 2{\rm{x}} = \pm 6 \cr
& \Leftrightarrow x = \pm 3\cr} \)
d)
\(\eqalign{
& \sqrt {9{{\rm{x}}^2}} = \left| { - 12} \right| \cr
& \Leftrightarrow \sqrt {{{\left( {3{\rm{x}}} \right)}^2}} = 12 \cr
& \Leftrightarrow \left| {3{\rm{x}}} \right| = 12 \cr
& \Leftrightarrow 3{\rm{x}} = \pm 12 \cr
& \Leftrightarrow x = \pm 4 \cr} \)