Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Bài 1 trang 12 vở thực hành Toán 9 tập 2: Đưa...

Bài 1 trang 12 vở thực hành Toán 9 tập 2: Đưa các phương trình sau về dạng ax^2 + bx + c = 0 và xác định các hệ số...

Thực hiện quy tắc chuyển vế để đưa phương trình về dạng: \(a{x^2} + bx + c = 0\). Gợi ý giải Giải bài 1 trang 12 vở thực hành Toán 9 tập 2 - Bài 19. Phương trình bậc hai một ẩn . Đưa các phương trình sau về dạng (a{x^2} + bx + c = 0) và xác định các hệ số

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và xác định các hệ số a, b, c của phương trình đó.

a) \(3{x^2} + 2x - 1 = {x^2} - x\);

b) \({\left( {2x + 1} \right)^2} = {x^2} + 1\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thực hiện quy tắc chuyển vế để đưa phương trình về dạng: \(a{x^2} + bx + c = 0\).

Answer - Lời giải/Đáp án

a) \(3{x^2} + 2x - 1 = {x^2} - x\)

Advertisements (Quảng cáo)

\(\left( {3{x^2} - {x^2}} \right) + \left( {2x + x} \right) - 1 = 0\)

\(2{x^2} + 3x - 1 = 0\)

Phương trình \(2{x^2} + 3x - 1 = 0\) có các hệ số \(a = 2;b = 3;c = - 1\).

b) \({\left( {2x + 1} \right)^2} = {x^2} + 1\)

\(4{x^2} + 4x + 1 = {x^2} + 1\)

\(\left( {4{x^2} - {x^2}} \right) + 4x + \left( {1 - 1} \right) = 0\)

\(3{x^2} + 4x = 0\)

Phương trình \(3{x^2} + 4x = 0\) có các hệ số \(a = 3;b = 4;c = 0\).

Advertisements (Quảng cáo)