Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Câu hỏi trắc nghiệm trang 33 vở thực hành Toán 9 tập...

Câu hỏi trắc nghiệm trang 33 vở thực hành Toán 9 tập 2: Điểm nào sau đây thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\)?...

Thay \(x = - 1\) vào đồ thị hàm số \(y = \frac{1}{2}{x^2}\), tìm được \(y = \frac{1}{2}\) nên tìm được điểm thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\). Phân tích và giải Câu 1, 2, 3, 4, 5, 6 - Bài hỏi trắc nghiệm trang 33 vở thực hành Toán 9 tập 2 - Bài tập cuối chương VI. Điểm nào sau đây thuộc đồ thị của hàm số (y = frac{1}{2}{x^2})? A. (left( {1;2} right)). B. (left( {2;1} right)). C. (left( {2;1} right)). D. (left( { - 1;frac{1}{2}} right))...

Chọn phương án đúng trong mỗi câu sau:

Câu 1

Điểm nào sau đây thuộc đồ thị của hàm số \(y = \frac{1}{2}{x^2}\)?

A. \(\left( {1;2} \right)\).

B. \(\left( {2;1} \right)\).

C. \(\left( {2;1} \right)\).

D. \(\left( { - 1;\frac{1}{2}} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Thay \(x = - 1\) vào đồ thị hàm số \(y = \frac{1}{2}{x^2}\), tìm được \(y = \frac{1}{2}\) nên tìm được điểm thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\).

Answer - Lời giải/Đáp án

Với \(x = - 1\), thay vào hàm số \(y = \frac{1}{2}{x^2}\) ta có: \(y = \frac{1}{2}.{\left( { - 1} \right)^2} = \frac{1}{2}\). Do đó, điểm \(\left( { - 1;\frac{1}{2}} \right)\) thuộc đồ thị hàm số \(y = \frac{1}{2}{x^2}\).

Chọn D


Câu 2

Hình bên là hai đường parabol trong mặt phẳng tọa độ Oxy. Khẳng định nào sau đây là đúng?

A. \(a

B. \(a

C. \(a > b > 0\).

D. \(a > 0 > b\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Đồ thị hàm số: \(y = a{x^2}\left( {a \ne 0} \right)\):

+ Nằm phía trên trục hoành nếu \(a > 0\).

+ Nằm phía dưới trục hoành nếu \(a

Answer - Lời giải/Đáp án

Vì đồ thị hàm số \(y = b{x^2}\) nằm phía dưới trục hoành nên \(0 > b\).

Vì đồ thị hàm số \(y = a{x^2}\) nằm phía trên trục hoành nên \(a > 0\).

Do đó, \(a > 0 > b\).

Chọn D


Câu 3

Các nghiệm của phương trình \({x^2} + 7x + 12 = 0\) là

A. \({x_1} = 3;{x_2} = 4\).

B. \({x_1} = - 3;{x_2} = - 4\).

C. \({x_1} = 3;{x_2} = - 4\).

D. \({x_1} = - 3;{x_2} = 4\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta = {b^2} - 4ac\).

+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).

+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

+ Nếu \(\Delta

Answer - Lời giải/Đáp án

Vì \(\Delta = {7^2} - 4.1.12 = 1 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - 7 + 1}}{2} = - 3;{x_2} = \frac{{ - 7 - 1}}{2} = - 4\)

Chọn B


Advertisements (Quảng cáo)

Câu 4

Phương trình bậc hai có hai nghiệm \({x_1} = 13\) và \({x_2} = 25\) là

A. \({x^2} - 13x + 25 = 0\).

B. \({x^2} - 25x + 13 = 0\).

C. \({x^2} - 38x + 325 = 0\).

D. \({x^2} + 38x + 325 = 0\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình \({x^2} - Sx + P = 0\) (điều kiện \({S^2} - 4P \ge 0\)).

Answer - Lời giải/Đáp án

Tổng hai nghiệm của phương trình là \(S = 38,\) tích hai nghiệm của phương trình là \(P = 325\) nên \({x_1},{x_2}\) là hai nghiệm của phương trình: \({x^2} - 38x + 325 = 0\).

Chọn C


Câu 5

Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình \({x^2} - 5x + 6 = 0\). Khi đó giá trị của biểu thức \(A = x_1^2 + x_2^2\) là

A. 13.

B. 19.

C. 25.

D. 5.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).

+ Tính biệt thức \(\Delta = {b^2} - 4ac\).

+ Nếu \(\Delta > 0\) thì áp dụng định lý Viète để tính tổng và tích các nghiệm \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\).

Biến đổi \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\), từ đó thay \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\) để tính giá trị biểu thức.

Answer - Lời giải/Đáp án

Vì \(\Delta = {\left( { - 5} \right)^2} - 4.6 = 1 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lý Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 6\)

Ta có: \(A = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.6 = 13\)

Chọn A


Câu 6

Chiều dài và chiều rộng của hình chữ nhật có chu vi 20cm và diện tích \(24c{m^2}\) là

A. 5cm và 4cm.

B. 6cm và 4cm.

C. 8cm và 3cm.

D. 10cm và 2cm.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Chiều dài và chiều rộng là nghiệm của phương trình \({x^2} - 10x + 24 = 0\).

+ Sử dụng công thức nghiệm thu gọn để tìm x, từ đó kết luận.

Answer - Lời giải/Đáp án

Nửa chu vi hình chữ nhật là: \(20:2 = 10\left( {cm} \right)\)

Chiều dài và chiều rộng là nghiệm của phương trình: \({x^2} - 10x + 24 = 0\)

Vì \(\Delta ‘ = {\left( { - 5} \right)^2} - 24 = 1 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = 5 + 1 = 6;{x_2} = 5 - 1 = 4\).

Do đó, chiều dài và chiều rộng của hình chữ nhật lần lượt là 6cm và 4cm (do chiều dài > chiều rộng).

Chọn B

Advertisements (Quảng cáo)