Cho \({\Delta _1}:\left\{ \begin{array}{l}x = - 2 + \sqrt 3 t\\y = 1 - t\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 t’\\y = 2 + t’\end{array} \right.\). Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
A. 300 B. 450 C. 900 D. 600
Tính góc giữa hai vectơ chỉ phương của ∆1 và ∆2 (sử dụng biểu thức tọa độ của tích vô hướng)
+ Nếu \(\left( {\overrightarrow {{u_{{\Delta _1}}}} ,\overrightarrow {{u_{{\Delta _2}}}} } \right) \le {90^0}\) thì \(\left( {{\Delta _1},{\Delta _2}} \right) = \left( {\overrightarrow {{u_{{\Delta _1}}}} ,\overrightarrow {{u_{{\Delta _2}}}} } \right)\)
Advertisements (Quảng cáo)
+ Nếu \({90^0} < \left( {\overrightarrow {{u_{{\Delta _1}}}} ,\overrightarrow {{u_{{\Delta _2}}}} } \right) < {180^0}\) thì \(\left( {{\Delta _1},{\Delta _2}} \right) = {180^0} - \left( {\overrightarrow {{u_{{\Delta _1}}}} ,\overrightarrow {{u_{{\Delta _2}}}} } \right)\)
∆1 có VTCP là \(\overrightarrow {{u_1}} = (\sqrt 3 ; - 1)\); ∆2 có VTCP là \(\overrightarrow {{u_2}} = (\sqrt 3 ;1)\)
Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\sqrt 3 .\sqrt 3 + ( - 1).1}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {{( - 1)}^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {1^2}} }}\)\( = \frac{2}{4} = \frac{1}{2}\)\( \Rightarrow \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = {60^0}\)
\( \Rightarrow \left( {{\Delta _1},{\Delta _2}} \right) = {60^0}\)
Chọn D