Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 89 trang 118 SBT Hình học 10 Nâng cao: (h.121).

Bài 89 trang 118 SBT Hình học 10 Nâng cao: (h.121)....

Bài 89 trang 118 SBT Hình học 10 Nâng cao. \(FM.FN\) có giá trị nhỏ nhất \( \Leftrightarrow     {\sin ^2}\alpha \) lớn  nhất \( \Leftrightarrow \sin \alpha  = 1   \Leftrightarrow \Delta  \bot Ox\).. Bài 7. Đường parabol

Cho parabol \((P): {y^2} = 2px  (p > 0)\) và đường thẳng \(\Delta \) đi qua tiêu điểm \(F\) của \((P)\) và cắt \((P)\) tại hai điểm \(M\) và \(N\). Gọi \(\alpha  = \left( {\overrightarrow i  , \overrightarrow {FM} } \right) (0 < \alpha  < \pi )\).

a) Tính \(FM, FN\) theo \(p\) và \(\alpha \).

b) Chứng minh rằng khi \(\Delta \) quay quanh \(F\) thì \( \dfrac{1}{{FM}} +  \dfrac{1}{{FN}}\) không đổi.

c) Tìm giá trị nhỏ nhất của tích \(FM.FN\) khi \(\alpha \) thay đổi.

(h.121).

 

Gọi \(H, M’\) thứ tự là hình chiếu của \(M\) trên \(Ox\) và đường chuẩn \(d\) cả parabol \((P)\), còn \(I\) là giao điểm của \(Ox\) và \(d\). Ta có

\(\begin{array}{l}MF = MM’ = IH.\\\overline {IH}  = \overline {IF}  + \overline {FH}\\     \Rightarrow    IH = p + \overrightarrow {FM} .\overrightarrow i \\= p + MF\cos \alpha \\ \Rightarrow   MF =  \dfrac{p}{{1 - \cos \alpha }}.\end{array}\)

Do \(\left( {\overrightarrow {FN} , \overrightarrow i } \right) = {180^0} - \alpha \) nên tương tự như trên ta cũng có

\(NF =  \dfrac{p}{{1 - \cos ({{180}^0} - \alpha )}}\)

Advertisements (Quảng cáo)

\(=  \dfrac{p}{{1 + \cos \alpha }}\)

b) \( \dfrac{1}{{FM}} +  \dfrac{1}{{FN}} \)

\(=  \dfrac{{1 - \cos \alpha }}{p} +  \dfrac{{1 + \cos \alpha }}{p}\)

\(=  \dfrac{2}{p}\) không đổi.

c) \(FM.FN \)

\(=  \dfrac{p}{{1 - \cos \alpha }}. \dfrac{p}{{1 + \cos \alpha }}\)

\(=  \dfrac{{{p^2}}}{{1 - {{\cos }^2}\alpha }} \)

\(=  \dfrac{{{p^2}}}{{{{\sin }^2}\alpha }}\)

\(FM.FN\) có giá trị nhỏ nhất \( \Leftrightarrow     {\sin ^2}\alpha \) lớn  nhất \( \Leftrightarrow \sin \alpha  = 1   \Leftrightarrow \Delta  \bot Ox\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)