Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Bài 93 trang 119 SBT Hình học 10 Nâng cao: Bài 7....

Bài 93 trang 119 SBT Hình học 10 Nâng cao: Bài 7. Đường parabol...

Bài 93 trang 119 SBT Hình học 10 Nâng cao. Bài 7. Đường parabol

Trên hình 90, cạnh \(DC\) của hình chữ nhật \(ABCD\) được chia thành \(n\) đoạn bằng nhau bởi các điểm chia \(C_1, C_2,…,C_{n-1}\), cạnh \(AD\) cũng được chia thành \(n\) đoạn bằng nhau bởi các điểm chia \(D_1, D_2, …, D{n-1}\). Gọi \(I_k\) là giao điểm của đoạn \(AC_k\) với đường thẳng qua \(D_k\) và song song với \(AB\). Chứng minh rằng các điểm \(I_k  (k=1, 2,…,n-1)\) nằm trên parabol có đỉnh \(A\) và trục đối xứng là \(AB.\)

Advertisements (Quảng cáo)

Chọn hệ trục tọa độ \(Oxy\) sao cho \(O\) trùng với \(A, AB\) nằm trên tia \(Ox, AD\) nằm trên tia \(Oy\). Đặt \(AB=a, AD=b.\) Hãy tìm tọa độ của \(I_k\) và chứng minh \(I_k\) nằm trên parabol có phương trình dạng: \({y^2} = 2px   (p > 0)\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)