Trang chủ Lớp 10 SBT Toán 10 Nâng cao (sách cũ) Câu 6.24 trang 199 Sách bài tập nâng cao Đại lớp 10:...

Câu 6.24 trang 199 Sách bài tập nâng cao Đại lớp 10: Bài 1 + 2. Góc và cung lượng giác. Giá trị lượng giác của góc (cung) lượng giác...

Câu 6.24 trang 199 SBT Đại số 10 Nâng cao. \(\sin \dfrac{{k2\pi }}{5}\left( {k \in Z} \right)\) có năm giá trị phân biệt, Bài 1 + 2. Góc và cung lượng giác. Giá trị lượng giác của góc (cung) lượng giác

Hỏi có bao nhiêu giá trị khác nhau của \(\sin \dfrac{{k2\pi }}{5}\), khi số nguyên k thay đổi?

Cũng câu hỏi đó cho \(\cos \dfrac{{k2\pi }}{5};\tan \dfrac{{k2\pi }}{5};\tan \dfrac{{k\pi }}{3}\).

• Các điểm trên đường tròn lượng giác xác định bởi các số \(\dfrac{{k2\pi }}{5}\left( {k \in Z} \right)\)là các đỉnh của ngũ giác đều nội tiếp đường tròn đó mà một đỉnh là \(A\left( {1;0} \right)\) . Từ chỗ quan sát hình ta thấy:

\(\sin \dfrac{{k2\pi }}{5}\left( {k \in Z} \right)\) có năm giá trị phân biệt,

Advertisements (Quảng cáo)

\(\cos \dfrac{{k2\pi }}{5}\left( {k \in Z} \right)\) có ba giá trị phân biệt,

\(\tan \dfrac{{k2\pi }}{5}\left( {k \in Z} \right)\) có năm giá trị phân biệt.

•  Các điểm trên đường tròn lượng giác xác định bởi các số \(\dfrac{{k\pi }}{3}\left( {k \in Z} \right)\) là các đỉnh của một lục giác đều nội tiếp đường tròn đó mà một đỉnh là \(A\left( {1;0} \right)\). Từ đó quan sát hình ta thấy:

\(\tan \dfrac{{k\pi }}{3}\left( {k \in Z} \right)\) có ba giá trị phân biệt (cụ thể là \(0;\sqrt 3 ; - \sqrt 3 \))

Bạn đang xem bài tập, chương trình học môn SBT Toán 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: