Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 1.52 trang 45 SBT Toán Hình học 10: Cho lục giác...

Bài 1.52 trang 45 SBT Toán Hình học 10: Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh...

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng. Bài 1.52 trang 45 Sách bài tập (SBT) Toán Hình học 10 - Ôn tập chương I

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng:

\(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME}  = \overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF} \)

Gợi ý làm bài

(h.1.65)

Advertisements (Quảng cáo)

Gọi O là tâm lục giác đều. Khi đó O là trọng tâm của các tam giác đều ACE và BDF.

Do đó, với mọi điểm M ta có:

\(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME}  = 3\overrightarrow {MO} \)

\(\overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF}  = 3\overrightarrow {MO} \)

Vậy ta có đẳng thức cần chứng minh. 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)