Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 2.35 trang 102 Sách BT Toán Hình học 10: Chứng minh...

Bài 2.35 trang 102 Sách BT Toán Hình học 10: Chứng minh rằng trong tam giác ABC ta có các hệ...

Chứng minh rằng trong tam giác ABC ta có các hệ thức. Bài 2.35 trang 102 Sách bài tập (SBT) Toán Hình học 10 - Bài 3: Các hệ thức lượng trong tam giác và giải tam giác

Chứng minh rằng trong tam giác ABC ta có các hệ thức:

a) \(\sin A = \sin B\cos C + \sin C\cos B\)

b) \({h_a} = 2R\sin B\sin C\)

Gợi ý làm bài

a) Theo định lý sin ta có: \({a \over {\sin A}} = {b \over {\sin B}} = {c \over {\sin C}}\)

Advertisements (Quảng cáo)

Do đó: \(a = 2R\sin A,b = 2R\sin B,c = 2R\sin C\)

Thay các giá trị này vào biểu thức: \(a = b\cos C + c\cos B\), ta có:

\(2R\sin A = 2R\sin B\cos C + 2R\sin C\cos B\)

\( =  > \sin A = \sin B\cos C + {\mathop{\rm sinCcosB}\nolimits} .\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)