Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 2.37 trang 102 Sách bài tập Toán Hình học 10: Chứng...

Bài 2.37 trang 102 Sách bài tập Toán Hình học 10: Chứng minh rằng diện tích hình bình hành bằng tích hai cạnh...

Chứng minh rằng diện tích hình bình hành bằng tích hai cạnh liên tiếp với sin của góc xen giữa chúng.. Bài 2.37 trang 102 Sách bài tập (SBT) Toán Hình học 10 - Bài 3: Các hệ thức lượng trong tam giác và giải tam giác

Chứng minh rằng diện tích hình bình hành bằng tích hai cạnh liên tiếp với sin của góc xen giữa chúng.

Gợi ý làm bài

(h.2.29)

Xét hình bình hành ABCD có \(AB = a,AD = b,\widehat {BAD} = \alpha \) và BH là đường cao, ta có \(BH \bot AD\) tại H

Gọi S là diện tích hình bình hành ABCD, ta có S = AD. BH với \(BH = AB\sin \alpha \)

Advertisements (Quảng cáo)

Vậy \(S = AD.AB\sin \alpha  = a.b.\sin \alpha \)

Nếu \(\widehat {BAD} = \alpha \) thì \(\widehat {ABC} = {180^0} - \alpha \)

Khi đó ta vẫn có \(\sin \widehat {BAD} = \sin \widehat {ABC}\)

Khi đó ta vẫn có

Nhận xét: Diện tích hình bình hành ABCD gấp đôi diện tích tam giác ABD mà tam giác ABD có diện tích là \({1 \over 2}ab\sin \alpha \). Do đó ta suy ra diện tích của hình bình hành bằng \(ab\sin \alpha \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: