Cho tam giác ABC có . Bài 2.50 trang 104 Sách bài tập (SBT) Toán Hình học 10 - Ôn tập chương II: Câu hỏi và bài tập
Cho tam giác ABC có BC = a, CA = b, AB = c. Chứng minh rằng
\({b^2} - {c^2} = a(b\cos C - c\cos B)\)
Gợi ý làm bài
Ta có: \({b^2} = {a^2} + {c^2} - 2ac\cos B\)
Advertisements (Quảng cáo)
\({c^2} = {a^2} + {b^2} - 2ab\cos C\)
\( = > {b^2} - {c^2} = {c^2} - {b^2} + 2a(b\cos C - c\cos B)\)
\( = > 2({b^2} - {c^2}) = 2a(b\cos C - c\cos B)\)
Hay \({b^2} - {c^2} = a(b\cos C - c\cos B)\)