Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 3.2 trang 143 Sách bài tập Toán Hình học 10: Cho...

Bài 3.2 trang 143 Sách bài tập Toán Hình học 10: Cho đường thẳng có phương trình tham số...

Cho đường thẳng có phương trình tham số . Bài 3.2 trang 143 Sách bài tập (SBT) Toán Hình học 10 - Bài 1: Phương trình đường thẳng

Cho đường thẳng \(\Delta \) có phương trình tham số  

\(\left\{ \matrix{
x = 2 + 2t \hfill \cr
y = 3 + t \hfill \cr} \right.\)

a) Tìm điểm M nằm trên \(\Delta \) và cách điểm A(0;1) một khoảng bằng 5.

b) Tìm tọa độ giao điểm của đường thẳng \(\Delta \) với đường thẳng x + y + 1 = 0

c) Tìm M trên \(\Delta \) sao cho AM ngắn nhất.

Gợi ý làm bài

a) \(M(2 + 2t;3 + t) \in \Delta .\)

\(AM = 5 \Leftrightarrow {(2 + 2t)^2} + {(2 + t)^2} = 25\)

\(\Leftrightarrow 5{t^2} + 12t - 17 = 0 \Leftrightarrow t = 1 \vee t =  - {{17} \over 5}\)

Advertisements (Quảng cáo)

Vậy M có tọa độ là (4;4) hay \(\left( {{{ - 24} \over 5};{{ - 2} \over 5}} \right)\)

b) \(M(2 + 2t;3 + t) \in \Delta .\)

\(\eqalign{
& d:x + y + 1 = 0 \cr
& M \in d \Leftrightarrow 2 + 2t + 3 + t + 1 = 0 \Leftrightarrow t = - 2 \cr} \)

Vậy M có tọa độ là (-2;1).

c) \(M(2 + 2t;3 + t) \in \Delta .\)

\(\overrightarrow {AM}  = (2 + 2t;2 + t)\), \({\overrightarrow u _\Delta } = (2;1)\)

Ta có AM ngắn nhất \( \Leftrightarrow \overrightarrow {AM}  \bot {\overrightarrow u _\Delta }\)

\( \Leftrightarrow 2(2 + 2t) + (2 + t) = 0 \Leftrightarrow t =  - {6 \over 5}\)

Vậy M có tọa độ là \(\left( { - {2 \over 5};{9 \over 5}} \right).\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: