Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 3.67 trang 164 SBT Toán Hình Học 10: Trong mặt phẳng...

Bài 3.67 trang 164 SBT Toán Hình Học 10: Trong mặt phẳng tọa độ Oxy, xét tam giác ABC vuông tại...

Trong mặt phẳng tọa độ Oxy, xét tam giác ABC vuông tại A. Bài 3.67 trang 164 Sách bài tập (SBT) Toán Hình Học 10 - Ôn tập chương III: Đề toán tổng hợp

Trong mặt phẳng tọa độ Oxy,xét tam giác ABC vuông tại A, phương trình đường thẳng BC là :  \(\sqrt 3 x - y - \sqrt 3  = 0\), các đỉnh A và B thuộc trục hoành và bán kính đường tròn nội tiếp tam giác bằng 2. Tìm tọa độ trọng tâm G của tam giác ABC.

Gợi ý làm bài

( Xem hình 3.25)

Ta có: \(BC \cap Ox = B(1;0)\)

Đặt \({x_A} = a\) ta có A(a;0) và \({x_C} = a \Rightarrow {y_C} = \sqrt 3 a - \sqrt 3 .\)

Vậy \(C\left( {a;\sqrt 3 a - \sqrt 3 } \right).\)

Từ công thức

\(\left\{ \matrix{
{x_G} = {1 \over 3}\left( {{x_A} + {x_B} + {x_C}} \right) \hfill \cr
{y_G} = {1 \over 3}\left( {{y_A} + {y_B} + {y_C}} \right) \hfill \cr} \right.\)

Ta có:

Advertisements (Quảng cáo)

\(G\left( {{{2a + 1} \over 3};{{\sqrt 3 \left( {a - 1} \right)} \over 3}} \right).\)

Mà \(AB = \left| {a - 1} \right|,AC = \sqrt 3 \left| {a - 1} \right|,BC = 2\left| {a - 1} \right|\). Do đó : 

\({S_{\Delta ABC}} = {1 \over 2}AB.AC = {{\sqrt 3 } \over 2}{\left( {a - 1} \right)^2}.\)

Ta có:

\(\eqalign{
& r = {{2S} \over {AB + AC + BC}} \cr
& = {{\sqrt 3 {{\left( {a - 1} \right)}^2}} \over {3\left| {a - 1} \right| + \sqrt 3 \left| {a - 1} \right|}} = {{\left| {a - 1} \right|} \over {\sqrt 3 + 1}} = 2. \cr} \)

Vậy \(\left| {a - 1} \right| = 2\sqrt 3  + 2.\)

Trường hợp 1

\({a_1} = 2\sqrt 3  + 3 \Rightarrow {G_1}\left( {{{7 + 4\sqrt 3 } \over 3};{{6 + 2\sqrt 3 } \over 3}} \right).\)

Trường hợp 2

\({a_2} =  - 2\sqrt 3  - 1 \Rightarrow {G_2}\left( {{{4\sqrt 3  - 1} \over 3};{{ - 6 - 2\sqrt 3 } \over 3}} \right).\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: