Chứng minh các biểu thức sau không phụ thuộc vào α
a) √sin4α+4(1−sin2α)+√cos4α+4sin2α√sin4α+4(1−sin2α)+√cos4α+4sin2α
b) 2(sin6α+cos6α)−3(cos4α+sin4α)2(sin6α+cos6α)−3(cos4α+sin4α)
c) 2tanα−1+cotα+1cotα−1(tanα≠1)2tanα−1+cotα+1cotα−1(tanα≠1)
Đáp án
a) Ta có:
√sin4α+4(1−sin2α)=√(2−sin2α)2=2−sin2α(sin2α≤1)√cos4α+4(1−cos2)=√(2−cos2α)2=2−cos2α(cos2α≤1)√sin4α+4(1−sin2α)=√(2−sin2α)2=2−sin2α(sin2α≤1)√cos4α+4(1−cos2)=√(2−cos2α)2=2−cos2α(cos2α≤1)
Vậy √sin4α+4(1−sin2α)+√cos4α+4sin2α√sin4α+4(1−sin2α)+√cos4α+4sin2α
=4−sin2α−cos2α=4−1=3=4−sin2α−cos2α=4−1=3
b) Ta có:
Advertisements (Quảng cáo)
sin6α+cos6αsin6α+cos6α
=(sin2α+cos2α)−3sin2αcos2α(sin2α+cos2α)=(sin2α+cos2α)−3sin2αcos2α(sin2α+cos2α)
=1−3sin2αcos2α=1−3sin2αcos2α
cos4α+sin4α=(cos2α+sin2α)2−2sin2αcos2αcos4α+sin4α=(cos2α+sin2α)2−2sin2αcos2α
=1−2sin2αcos2α=1−2sin2αcos2α
Suy ra:
2(sin6α+cos6α)−3(cos4α+sin4α)=2−6sin2αcos2α−3(1−2sin2αcos2α)=2−3=−12(sin6α+cos6α)−3(cos4α+sin4α)=2−6sin2αcos2α−3(1−2sin2αcos2α)=2−3=−1
c) Ta có:
2tanα−1+cotα+1cotα−1=21cotα−1+cosα+1cotα−1=2cotα1−cotα+cotα+1cotα−1=cotα−11−cotα=−12tanα−1+cotα+1cotα−1=21cotα−1+cosα+1cotα−1=2cotα1−cotα+cotα+1cotα−1=cotα−11−cotα=−1