Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 50 trang 215 Đại số 10 Nâng cao: Chứng minh rằng...

Bài 50 trang 215 Đại số 10 Nâng cao: Chứng minh rằng nếu tam giác ABC có 3 góc thỏa:...

Chứng minh rằng nếu tam giác ABC có 3 góc thỏa:. Bài 50 trang 215 SGK Đại số 10 Nâng cao - Bài 4: Một số công thức lượng giác

Chứng minh rằng nếu tam giác ABC có 3 góc thỏa:

a) \(sinA = cosB + cosC\) thì ΔABC vuông

b) \(sinA = 2sinB.cosC\) thì ΔABC cân

Đáp án

a) Ta có:

\(\eqalign{
& sinA = cosB + cosC\cr& \Rightarrow \sin A = 2\cos {{B + C} \over 2}\cos {{B - C} \over 2} \cr
& \Leftrightarrow 2\sin {A \over 2}(cos{A \over 2} - \cos {{B - C} \over 2}) = 0 \cr
& \Leftrightarrow \cos {A \over 2} = \cos {{B - C} \over 2}\;(\sin{A \over 2} \ne 0\,do\,0 < A < \pi ) \cr} \)

Nhưng: \(0 < {A \over 2} < {\pi  \over 2};|{{B - C} \over 2}|\, < {\pi  \over 2}\) , nên:

\(\cos {A \over 2} = \cos {{B - C} \over 2} \Leftrightarrow {A \over 2} = |{{B - C} \over 2}|\, \Leftrightarrow A = |B - C|\)

Advertisements (Quảng cáo)

+ Nếu B > C thì A = B – C. Suy ra: \(S = {\pi  \over 2}\)

+ Nếu B < C thì A = C – B. Suy ra: \(C = {\pi  \over 2}\)

b) \(sinA = 2sinB.cosC \)

\(⇔ sin A = sin (B + C) + sin (B – C)\)

\(⇔ sin A = sin(π – A) + sin(B – C) \)

\(⇔ sin(B – C) = 0\)

Vì \(0 ≤ |B – C| ≤ π\), nên \(B – C = 0\)

Vậy tam giác ABC cân tại A.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)