Quỹ đạo của một vật được ném lên từ gốc O, với vận tốc ban đầu là v(m/s) theo phương hợp với trục hoành (nằm ngang) Ox một góc α , \(0 < \alpha < {\pi \over 2}\) là parabol có phương trình :
\(y = - {g \over {2{v^2}{{\cos }^2}\alpha }}{x^2} + (\tan \alpha )x\)
Trong đó g là gia tốc trọng trường (g ≈ 9,8m/s2) (giả sử lực cản của không khí là không đáng kể).
Gọi tầm xa của quỹ đạo là khoảng cách từ O đến giao điểm khác O của quỹ đạo với Ox.
a) Tính tầm xa theo α (và v)
b) Khi v không đổi, α thay đổi trong khoảng \((0,\,{\pi \over 2})\) , hỏi giá trị α nào thì tầm xa của quỹ đạo đạt được giá trị lớn nhất? Tính giá trị đó theo v. Khi v = 80m/s. Hãy tính giá trị lớn nhất đó (chính xác đến hàng đơn vị).
Advertisements (Quảng cáo)
Đáp án
a) Gọi x là tầm xa của quỹ đạo, thì:
\(\left\{ \matrix{
x > 0 \hfill \cr
- {{g{x^2}} \over {2{v^2}{{\cos }^2}\alpha }} + (\tan \alpha )x = 0 \hfill \cr} \right.\)
tức là: \(x = {{2{v^2}\sin \alpha \cos \alpha } \over g} = {{{v^2}} \over g}\sin 2\alpha \)
b) x đạt giá trị lớn nhất khi và chỉ khi \(\sin 2\alpha = 1 \Rightarrow \alpha = {\pi \over 4}\)
Khi đó: \(x = {{{v^2}} \over g}\)
Với \(v = 80m/s\) thì \({{{v^2}} \over g} \approx {{{{80}^2}} \over {9,8}} \approx 653(m)\)