Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a. Giải - Bài 15 trang 14 sách bài tập toán 11 - Cánh diều - Bài 2. Các phép biến đổi lượng giác. Cho hai góc \(a\) và \(b\) với \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Khi đó \(\tan \left( {a + b} \right)\) bằng...
Cho hai góc \(a\) và \(b\) với \(\tan a = \frac{1}{7}\) và \(\tan b = \frac{3}{4}\). Khi đó \(\tan \left( {a + b} \right)\) bằng:
A. \(1\)
B. \( - \frac{{17}}{{31}}\)
C. \(\frac{{17}}{{31}}\)
D.\( - 1\)
Advertisements (Quảng cáo)
Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)
Ta có \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}} = \frac{{\frac{1}{7} + \frac{3}{4}}}{{1 - \frac{1}{7}.\frac{3}{4}}} = 1\)
Đáp án đúng là A.