Thay \(n = 10\) vào công thức \({u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 2}}\)để tìm \({u_{10}}\). Trả lời - Bài 2 trang 45 sách bài tập toán 11 - Cánh diều - Bài 1. Dãy số. Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 2}}\). Số hạng \({u_{10}}\) là...
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 2}}\). Số hạng \({u_{10}}\) là:
A. \(\frac{{19}}{{12}}\)
B. \(\frac{{33}}{{34}}\)
C. \(\frac{{199}}{{102}}\)
Advertisements (Quảng cáo)
D. \(\frac{3}{4}\)
Thay \(n = 10\) vào công thức \({u_n} = \frac{{2{n^2} - 1}}{{{n^2} + 2}}\)để tìm \({u_{10}}\)
Ta có \({u_{10}} = \frac{{{{2.10}^2} - 1}}{{{{10}^2} + 2}} = \frac{{199}}{{102}}\). Đáp án đúng là C.