Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = \tan \alpha \). Hướng dẫn trả lời - Bài 3 trang 10 sách bài tập toán 11 - Cánh diều - Bài 1. Góc lượng giác. Giá trị lượng giác của góc lượng giác. Cho \(\tan \alpha + \cot \alpha = 2\). Khi đó \({\tan ^2}\alpha + {\cot ^2}\alpha \) bằng...
Cho \(\tan \alpha + \cot \alpha = 2\). Khi đó \({\tan ^2}\alpha + {\cot ^2}\alpha \) bằng:
A. 8
B. 4
C. 16
D. 2
Advertisements (Quảng cáo)
Sử dụng hằng đẳng thức \({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\) với \(A = \tan \alpha \), \(B = \cot \alpha \)
Sử dụng công thức \(\tan \alpha .\cot \alpha = 1\).
Ta có: \({\left( {\tan \alpha + \cot \alpha } \right)^2} = {\tan ^2}\alpha + 2\tan \alpha .\cot \alpha + {\cot ^2}\alpha = {\tan ^2}\alpha + {\cot ^2}\alpha + 2\)
Suy ra \({\tan ^2}\alpha + {\cot ^2}\alpha = {\left( {\tan \alpha + \cot \alpha } \right)^2} - 2 = {2^2} - 2 = 2\).
Đáp án đúng là D.