Sử dụng đồ thị hàm số \(y = \cos x\) để xác định giá trị của hàm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\). Gợi ý giải - Bài 51 trang 29 sách bài tập toán 11 - Cánh diều - Bài 4. Phương trình lượng giác cơ bản. Giá trị của \(m\) để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là...
Giá trị của \(m\) để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là:
A. \(0 \le m
B. \(0 \le m \le 1\)
C. \(0
D. \(0
Advertisements (Quảng cáo)
Sử dụng đồ thị hàm số \(y = \cos x\) để xác định giá trị của hàm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Đồ thị hàm số \(y = \cos x\) trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) được vẽ như hình dưới đây.
Nhìn vào đồ thị, ta thấy trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\), ta thấy \(0
Như vậy, để phương trình \(\cos x = m\) có nghiệm trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thì \(0
Đáp án đúng là C.