Do \(\tan \alpha \) xác định nên \(\cos \alpha \ne 0\). Chia cả tử và mẫu của \(A\) cho \(\cos \alpha \). Gợi ý giải - Bài 64 trang 31 sách bài tập toán 11 - Cánh diều - Bài tập cuối chương I. Cho \(\tan \alpha = 2\). Giá trị của biểu thức \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) bằng bao nhiêu?...
Cho \(\tan \alpha = 2\). Giá trị của biểu thức \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) bằng bao nhiêu?
Do \(\tan \alpha \) xác định nên \(\cos \alpha \ne 0\).
Chia cả tử và mẫu của \(A\) cho \(\cos \alpha \), và sử dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\).
Advertisements (Quảng cáo)
Do \(\tan \alpha \) xác định nên \(\cos \alpha \ne 0\).
Chia cả tử và mẫu của \(A\) cho \(\cos \alpha \), ta được:
\(A = \frac{{3\frac{{\sin \alpha }}{{\cos \alpha }} + 1}}{{\frac{{\sin \alpha }}{{\cos \alpha }} - 1}} = \frac{{3\tan \alpha + 1}}{{\tan \alpha - 1}} = \frac{{3.2 + 1}}{{2 - 1}} = 7\)