Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 7 trang 10 SBT Toán 11 – Cánh diều: Cho (sin...

Bài 7 trang 10 SBT Toán 11 - Cánh diều: Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\). Tính \(\cos \alpha \), \(\tan \alpha \)...

Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\) để tính \(\cos \alpha \). Vận dụng kiến thức giải - Bài 7 trang 10 sách bài tập toán 11 - Cánh diều - Bài 1. Góc lượng giác. Giá trị lượng giác của góc lượng giác. Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\)...

Question - Câu hỏi/Đề bài

Cho \(\sin \alpha = \frac{1}{3}\) với \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\). Tính \(\cos \alpha \), \(\tan \alpha \), \(\cot \alpha \).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Sử dụng công thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) và điều kiện \(\alpha \in \left( {\frac{\pi }{2};\pi } \right)\) để tính \(\cos \alpha \).

Sử dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\), \(\cot \alpha = \frac{1}{{\tan \alpha }}\) để tính \(\tan \alpha \), \(\cot \alpha \).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Do \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9} \Rightarrow \cos \alpha = \pm \frac{{2\sqrt 2 }}{3}\)

Vì \(\alpha \in \left( {\frac{\pi }{2};\pi } \right) \Rightarrow \cos \alpha

Ta có \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{1}{3}:\frac{{ - 2\sqrt 2 }}{3} = - \frac{{\sqrt 2 }}{4}\), \(\cot \alpha = \frac{1}{{\tan \alpha }} = 1:\frac{{ - \sqrt 2 }}{4} = - 2\sqrt 2 \).

Advertisements (Quảng cáo)