Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3\;\;\;\;\;\;\;\;\;khi\;x \le 1\\ax + b\;\;khi\;1
Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên \(\left[ {a;b} \right]\) nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\;\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\)
Advertisements (Quảng cáo)
Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {ax + b} \right) = a + b\), \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {ax + b} \right) = 2a + b\)
Để hàm số f(x) liên tục trên \(\mathbb{R}\) thì \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right)\end{array} \right.\).
Do đó, \(\left\{ \begin{array}{l}a + b = 3\\2a + b = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 1\end{array} \right.\)