Biết \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1. Hãy tính:
a) \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{{x^3}}};
b) \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}}
c) \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sin x}}{{{x^2}}}.
Áp dụng lý thuyết:
\mathop {\lim }\limits_{x \to {x_o}} f(x) = L > 0 và \mathop {\lim }\limits_{x \to {x_o}} g(x) = 0 thì \mathop {\lim }\limits_{x \to {x_o}} \frac{{f(x)}}{{g(x)}} = + \infty
Advertisements (Quảng cáo)
\mathop {\lim }\limits_{x \to {x_o}} f(x) = L > 0 và \mathop {\lim }\limits_{x \to {x_o}^ + } g(x) = 0 thì \mathop {\lim }\limits_{x \to {x_o}} \frac{{f(x)}}{{g(x)}} = + \infty
\mathop {\lim }\limits_{x \to {x_o}} f(x) = L > 0 và \mathop {\lim }\limits_{x \to x_{_o}^ - } g(x) = 0 thì \mathop {\lim }\limits_{x \to {x_o}} \frac{{f(x)}}{{g(x)}} = - \infty
Đặt f(x) = \frac{{\sin x}}{x}. Khi đó
a) \mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{{{x^3}}} = \mathop {\lim }\limits_{x \to 0} \frac{{f(x)}}{{{x^2}}} = + \infty .
b) \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sin x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{f(x)}}{x} = + \infty .
c) \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sin x}}{{{x^2}}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f(x)}}{x} = - \infty .