Tính các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}}\);
b) \(\mathop {\lim }\limits_{x \to - \infty } ({x^3} - 1)(2 - {x^5})\);
c) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right)\).
Advertisements (Quảng cáo)
+ Nếu \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty \) và \(\mathop {\lim }\limits_{n \to + \infty } {v_n} = a
Đối với những biểu thức chứa hiệu của căn, chúng ta dùng phương pháp nhân liên hợp. Để tính giới hạn của dãy số dạng phân thức, ta chia cả tử thức và mẫu thức cho lũy thừa cao nhất của n, rồi áp dụng các quy tắc tính giới hạn.
a) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x(x + 1)(2x - 1)}}{{5{x^3} + x + 7}} = \frac{2}{5}.\)
b) \(\mathop {\lim }\limits_{x \to - \infty } ({x^3} - 1)(2 - {x^5}) = \mathop {\lim }\limits_{x \to - \infty } {x^8}\left( {1 - \frac{1}{{{x^3}}}} \right)\left( {\frac{2}{{{x^5}}} - 1} \right) = - \infty \).
c) \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[3]{{{x^2} + {x^2} + 1}} - x} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 1}}{{\sqrt[3]{{{{\left( {{x^3} + {x^2} + 1} \right)}^2}}} + x\,\sqrt[3]{{{x^3} + {x^2} + 1}} + {x^2}}} = \frac{1}{3}.\)