Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 6.25 trang 14 SBT Toán 11 – Kết nối tri thức:...

Bài 6.25 trang 14 SBT Toán 11 - Kết nối tri thức: Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\, \, \, \...

Áp dụng quy tắc tính lôgarit Giả sử a là số thực dương khác \(1, \, M\) và \(N\) là các số thực dương. Hướng dẫn cách giải/trả lời - Bài 6.25 trang 14 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 20. Hàm số mũ và hàm số lôgarit. Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\, \, \, \, (0 < a \ne 1)\). Chứng minh rằng...

Question - Câu hỏi/Đề bài

Cho hàm số lôgarit \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_a}x\,\,\,\,(0

a) \(f\left( {\frac{1}{x}} \right) = - f\left( x \right)\)

b) \(f\left( {{x^\alpha }} \right) = \alpha f\left( x \right)\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Áp dụng quy tắc tính lôgarit

Advertisements (Quảng cáo)

Giả sử a là số thực dương khác \(1,\,M\) và \(N\) là các số thực dương, \(\alpha \) là số thực tuỳ ý.

\(\begin{array}{l}{\log _a}(MN) = {\log _a}M + {\log _a}N;\\{\log _a}\left( {\frac{M}{N}} \right) = {\log _a}M - {\log _a}N;{\log _a}\frac{1}{b} = {\log _a}1 - {\log _a}b = {\log _a}b\\{\log _a}{M^a} = \alpha {\log _a}M.\end{array}\)

Answer - Lời giải/Đáp án

a) \(f\left( {\frac{1}{x}} \right) = {\rm{lo}}{{\rm{g}}_a}\frac{1}{x} = - {\rm{lo}}{{\rm{g}}_a}x = - f\left( x \right)\)

b) \(f\left( {{x^\alpha }} \right) = {\rm{lo}}{{\rm{g}}_a}{x^\alpha } = \alpha {\rm{lo}}{{\rm{g}}_a}x = \alpha f\left( x \right)\).

Advertisements (Quảng cáo)