Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 7.14 trang 30 SBT Toán 11 – Kết nối tri thức:...

Bài 7.14 trang 30 SBT Toán 11 - Kết nối tri thức: Cho hình chóp \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\)...

Chứng minh có \(AC\) là hình chiếu vuông góc của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\). Khi đó \(\left( {\widehat {SC. Hướng dẫn trả lời - Bài 7.14 trang 30 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 24. Phép chiếu vuông góc với mặt phẳng. Cho hình chóp \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\), \(SA = a\sqrt 2 \)...

Question - Câu hỏi/Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA \bot \left( {ABCD} \right)\), \(SA = a\sqrt 2 \).

a) Tính góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\).

b) Tính tang góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Chứng minh có \(AC\) là hình chiếu vuông góc của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {ABCD} \right)}} \right) = \left( {\widehat {SC,AC}} \right) = \widehat {SCA}\).

Tính \(\widehat {SCA}\).

b) Chứng minh \(SB\) là hình chiếu vuông góc của \(SC\) lên mp\(\left( {SAB} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {SAB} \right)}} \right) = \left( {\widehat {SC,SB}} \right) = \widehat {B{\rm{S}}C}\).

Tính \(\widehat {BSC}\).

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

a) Ta có \(SA \bot \left( {ABCD} \right) \Rightarrow AC\) là hình chiếu vuông góc của \(SC\) lên mặt phẳng \(\left( {ABCD} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {ABCD} \right)}} \right) = \left( {\widehat {SC,AC}} \right) = \widehat {SCA}\).

Mặt khác tam giác \(SAC\) vuông tại \(A\) có \(AC = a\sqrt 2 \) và \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = 1 \Rightarrow \widehat {SCA} = 45^\circ \).

Vậy đường thẳng \(SC\) hợp với mặt phẳng \(\left( {ABCD} \right)\) một góc \(45^\circ \).

b) Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow SB\) là hình chiếu vuông góc của \(SC\) lên mp\(\left( {SAB} \right)\).

Khi đó \(\left( {\widehat {SC,\left( {SAB} \right)}} \right) = \left( {\widehat {SC,SB}} \right) = \widehat {B{\rm{S}}C}\).

Mặt khác tam giác \(SBC\) vuông tại \(B\) có \(BC = a,SB = \sqrt {S{A^2} + A{B^2}} = a\sqrt 3 \).

Do đó \(\tan \widehat {BSC} = \frac{{BC}}{{SB}} = \frac{{\sqrt 3 }}{3}\).

Vậy tang góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {SAB} \right)\) là \(\frac{{\sqrt 3 }}{3}\).

Advertisements (Quảng cáo)