Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 7.24 trang 34 SBT Toán 11 – Kết nối tri thức:...

Bài 7.24 trang 34 SBT Toán 11 - Kết nối tri thức: Cho hình chóp \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, biết \(\left( {SAB} \right) \bot \left( {ABCD} \right)\)...

Để tính góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) ta có thể thực hiện cách sau: Tìm hai đường thẳng \(a. Giải - Bài 7.24 trang 34 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài 25. Hai mặt phẳng vuông góc. Cho hình chóp \(S. ABCD\) có đáy \(ABCD\) là hình vuông cạnh a...

Question - Câu hỏi/Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh a, biết \(\left( {SAB} \right) \bot \left( {ABCD} \right)\), \(\left( {SAD} \right) \bot \left( {ABCD} \right)\) và \(SA = a\). Tính côsin của số đo góc nhị diện \(\left[ {S,BD,C} \right]\) và góc nhị diện \(\left[ {B,SC,D} \right]\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Để tính góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) ta có thể thực hiện cách sau:

Tìm hai đường thẳng \(a,b\) lần lượt vuông góc với hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

Khi đó góc giữa hai đường thẳng \(a,b\) chính là góc giữa hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\).

\(\left\{ \begin{array}{l}a \bot \left( \alpha \right)\\b \bot \left( \beta \right)\end{array} \right. \Rightarrow \widehat {\left( {\left( \alpha \right),\left( \beta \right)} \right)} = \widehat {\left( {a,b} \right)}\).

Áp dụng tính chất: Hình vuông có hai đường chéo vuông góc

Dựa vào tỉ số lượng giác trong tam giác vuông để tìm góc

Advertisements (Quảng cáo)

Áp dụng định lý côsin trong tam giác

Answer - Lời giải/Đáp án

Ta có \(SO \bot BD,CO \bot BD\) nên góc nhị diện \(\left[ {S,BD,C} \right]\) bằng \(\widehat {SOC}\).

Vì tam giác \(SAO\) vuông tại \(A\) nên \(SO = \sqrt {S{A^2} + A{O^2}} = \frac{{a\sqrt 6 }}{2}\) và \({\rm{cos}}\widehat {SOC} = - {\rm{cos}}\widehat {SOA} = - \frac{{OA}}{{SO}} = - \frac{{\sqrt 3 }}{3}\).

Kẻ \(BM \bot SC\) tại \(M\) thì \(DM \bot SC\) nên \(\left[ {B,SC,D} \right] = \widehat {BMD}\).

Ta có \(BC \bot \left( {SAB} \right)\) nên tam giác \(SBC\) vuông tại \(B\), tính được \(SB = a\sqrt 2 \), \(SC = a\sqrt 3 \) và \(DM = BM = \frac{{SB \cdot BC}}{{SC}} = \frac{{a\sqrt 6 }}{3}\).

Áp dụng định lý côsin trong tam giác \(BDM\), ta có: \({\rm{cos}}\widehat {BMD} = \frac{{B{M^2} + D{M^2} - B{D^2}}}{{2 \cdot BM \cdot DM}} = - \frac{3}{4}\).

Advertisements (Quảng cáo)