38. Trang 11 Sách bài tập Hình Học 11 nâng cao.
Cho tam giác đều ABC với (AB, AC) = (BC, BA) = (CA, CB) = \({60^o}.\) Hãy kể ra các phép dời hình biến tam giác ABC thành chính nó.
Nếu F là phép dời hình biến tam giác đều ABC thành chính nó thì F phải biến đỉnh của tam giác thành đỉnh của tam giác đó. Ta có thể kí hiệu tam giác với đỉnh A, B, C theo sáu cách khác nhau:
\(ABC,\,ACB,\,BCA,\,CAB,\,CBA\)
Cho nên có sau phép dời hình biến tam giác ABC thành một trong sáu tam giác kể trên. Cụ thể là:
Advertisements (Quảng cáo)
a) Phép dời hình biến tam giác ABC thành tam giác ABC: Đó là phép đồng nhất.
b) Phép dời hình biến tam giác ABC thành tam giác ACB: Đó là phép đối xứng qua đường trung trực của cạnh BC.
c) Phép dời hình biến tam giác ABC thành tam giác BCA: Đó là phép quay tâm O (tâm của tam giác đều) với góc quay \({120^o}.\)
d) Phép dời hình biến tam giác ABC thành tam giác BAC: Đó là phép đối xứng qua trung trực của cạnh AB.
e) Phép dời hình biến tam giác ABC thành tam giác CAB: Đó là phép quay quanh O với góc quay \( - {120^o}.\)
f) Phép dời hình biến tam giác ABC thành tam giác CBA: Đó là phép đối xứng qua trung trực của cạnh AC.