Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 4.17 trang 136 sách bài tập Đại số và Giải tích...

Câu 4.17 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao: Chứng minh rằng...

Chứng minh rằng. Câu 4.17 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 2: Dãy có giới hạn hữu hạn

Chứng minh rằng nếu \(\left| q \right| < 1\) thì \(\lim {q^n} = 0\)

H.D. Xét trường hợp \(0 < q < 1.\) Khi đó \(p = {1 \over q} > 1.\) Do đó

\(p = 1 + h\) với \(h = p - 1 > 0\) và \({1 \over {{q^n}}} = {p^n} = {\left( {1 + h} \right)^n} \ge 1 + nh\) với mọi n

Chỉ cần chứng minh cho trường hợp \(0 < q < 1.\) Khi đó, đặt \(p = {1 \over q},\) ta được \(p > 1.\) Do đó

                        \(p = 1 + h\) với \(h = p - 1 > 0\)

Advertisements (Quảng cáo)

Ta có

      \({1 \over {{q^n}}} = {p^n} = {\left( {1 + h} \right)^n} \ge 1 + nh > nh\) với mọi n

Do đó

                        \(0 < {q^n} < {1 \over h}.{1 \over n}\) với mọi n

Vì \(\lim {1 \over n} = 0\) nên từ đó suy ra

                        \(\lim {q^n} = 0\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)