Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 4.20 trang 136 SBT Đại số 11 Nâng cao: Chứng minh...

Câu 4.20 trang 136 SBT Đại số 11 Nâng cao: Chứng minh rằng...

Chia sẻ
Chứng minh rằng. Câu 4.20 trang 136 sách bài tập Đại số và Giải tích 11 Nâng cao – Bài 2: Dãy có giới hạn hữu hạn

a) Chứng minh rằng nếu dãy số \(\left( {{u_n}} \right)\) không có giới hạn hữu hạn với mọi số \(c \ne 0,\) dãy \(\left( {c{u_n}} \right)\) cũng không có giới hạn hữu hạn

b) Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn. Có thể kết luận rằng dãy số \(\left( {{u_n} + {v_n}} \right)\) có giới hạn hữu hạn không ?

Giải

a) Chứng minh bằng phương pháp phản chứng.

b) Dãy \(\left( {{u_n} + {v_n}} \right)\) có thể có giới hạn hoặc không có giới hạn hữu hạn. Chẳng hạn hai dãy  số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\) với \({u_n} = {\left( { – 1} \right)^n}\) và \({v_n} = {\left( { – 1} \right)^{n + 1}}\) đều không có giới hạn hữu hạn, nhưng dãy số \(\left( {{u_n} + {v_n}} \right)\) là dãy số có giới hạn hữu hạn (\({u_n} + {v_n} = 0\) với mọi n)

Nếu \(\left( {{u_n}} \right)\) là một dãy số không có giới hạn hữu hạn thì dãy số \(\left( {{u_n} + {v_n}} \right) = \left( {2{u_n}} \right)\) không có giới hạn hữu hạn.