Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 4.46 trang 141 Sách Toán Đại số lớp 11 SBT Nâng...

Câu 4.46 trang 141 Sách Toán Đại số lớp 11 SBT Nâng cao: Tính...

Tính. Câu 4.46 trang 141 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 5. Giới hạn một bên

a) \(\mathop {\lim }\limits_{x \to {1^ + }} {{{x^2} + 1} \over {x - 1}}\)                                b) \(\mathop {\lim }\limits_{x \to {1^ - }} {{{x^2} + 1} \over {x - 1}}\)            

c) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\left| {3x + 6} \right|} \over {x + 2}}\)                         d) \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} {{\left| {3x + 6} \right|} \over {x + 2}}\) .

a) 

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} + 1} \right) = 2 > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ + }} {{{x^2} + 1} \over {x - 1}} = + \infty \cr} \)

b) 

Advertisements (Quảng cáo)

\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 1} \right) = 2 > 0 \cr
& \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 1} \right) < 0 \cr
& \mathop {\lim }\limits_{x \to {1^ - }} {{{x^2} + 1} \over {x - 1}} = - \infty \cr} \)

c) Với \(x >  - 2,\) ta có \(3x + 6 = 3\left( {x + 2} \right) > 0.\) Do đó

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{\left| {3x + 6} \right|} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} {{3x + 6} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} 3 = 3;\)

d) Với \(x <  - 2,\) ta có \(3x + 6 = 3\left( {x + 2} \right) < 0.\) Do đó

\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} {{\left| {3x + 6} \right|} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }} -{{3x + 6} \over {x + 2}} = \mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ - }}(- 3) =- 3\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)