Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 4.30 trang 138 SBT Đại số 11 Nâng cao: Cho hai...

Câu 4.30 trang 138 SBT Đại số 11 Nâng cao: Cho hai dãy số...

Chia sẻ
Cho hai dãy số. Câu 4.30 trang 138 sách bài tập Đại số và Giải tích 11 Nâng cao – Bài 3: Dãy có giới hạn vô cực

Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\). Chứng minh rằng

a) Nếu \({u_n} \le {v_n}\) với mọi n và \(\lim {u_n} =  + \infty \) thì \({{\mathop{\rm limv}\nolimits} _n} =  + \infty \)                                             

b) Nếu \(\lim {u_n} = L \in R\) và \(\lim \left| {{v_n}} \right| =  + \infty \) thì \(\lim {{{u_n}} \over {{v_n}}} = 0\) 

c) Nếu \(\lim {u_n} =  + \infty \) (hoặc \( – \infty \)) và  \(\lim {v_n} = L \in R\) thì \(\lim \left( {{u_n} + {v_n}} \right) =  + \infty \) (hoặc \( – \infty \))

Giải          

a) Suy ra từ định nghĩa của dãy số có giới hạn \( + \infty \)

b) Vì  \(\lim \left| {{v_n}} \right| =  + \infty \) nên \(\lim {1 \over {{v_n}}} = 0.\) Do đó

\(\lim {{{u_n}} \over {{v_n}}} = \lim \left( {{u_n}.{1 \over {{v_n}}}} \right) = \left( {\lim {u_n}} \right)\lim {1 \over {{v_n}}} = L.0 = 0\)

c) Giả sử \(\lim {u_n} =  + \infty \)và \(\lim {v_n} = L.\) Khi đó

                        \({u_n} + {v_n} = {u_n}\left( {1 + {{{v_n}} \over {{u_n}}}} \right)\)

Theo b), ta có \(\lim {{{u_n}} \over {{v_n}}} = 0\). Vì \(\lim {u_n} =  + \infty \) và \(\lim \left( {1 + {{{v_n}} \over {{u_n}}}} \right) = 1 > 0\) nên \(\lim \left( {{u_n} + {v_n}} \right) =  + \infty \)

Nhận xét. Tương tự, có thể chứng minh được rằng

a) Nếu dãy số \(\left( {{u_n}} \right)\) bị chặn (tức là tồn tại một số dương M sao cho \(\left| {{u_n}} \right| \le M\) với mọi n) và \(\lim \left| {{u_n}} \right| =  + \infty \) thì \(\lim {{{u_n}} \over {{v_n}}} = 0\)

b) Nếu \(\lim {u_n} =  + \infty \)(hay \( – \infty \)) và \(\left( {{v_n}} \right)\) là một dãy số bị chặn thì

                        \(\lim \left( {{u_n} + {v_n}} \right) =  + \infty \) (hay \( – \infty \))


Loading...