Tìm các giới hạn sau:
a) \(\mathop {\lim }\limits_{x \to 2} {{\sqrt {3x - 2} - 2} \over {{x^2} + 7x - 18}}\)
b) \(\mathop {\lim }\limits_{x \to - 1} {{\sqrt {{x^2} + x + 2} - \sqrt {1 - x} } \over {{x^4} + x}}\)
c) \(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}}\)
d) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 8x} - \sqrt {{x^2} - x} } \right).\)
Advertisements (Quảng cáo)
a) \({3 \over {44}};\) b) 0;
c) Với \(x > 2,\) ta có \(\left| {x - 1} \right| = x - 1\) và \(\left| {x - 2} \right| = x - 2.\) Do đó
\({{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = {{3 - \left( {x - 1} \right)} \over {x - 2 - 2}} = {{4 - x} \over {x - 4}} = - 1\) với \(x > 2\) và \(x \ne 4.\)
Do đó
\(\mathop {\lim }\limits_{x \to 4} {{3 - \left| {x - 1} \right|} \over {\left| {x - 2} \right| - 2}} = \mathop {\lim }\limits_{x \to 4} \left( { - 1} \right) = - 1;\)
d) \( - {9 \over 2}.\)