Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 44 trang 59 Sách BT Hình 11 Nâng cao Cho hình...

Câu 44 trang 59 Sách BT Hình 11 Nâng cao Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P)...

Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Câu 44 trang 59 Sách Bài tập Hình học 11 Nâng cao - Bài 4: Hai mặt phẳng song song

44. Trang 59 Sách Bài tập Hình học 11 Nâng cao 

Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Chứng minh rằng tứ giác A’B’C’D’ là hình bình hành khi và chỉ khi mặt phẳng (P) song song với mp(ABCD).

(h.97)

- Giả sử A’B’C’D’ là hình bình hành. Ta có:

A’B’ // C’D’

A’B’ \( \subset \) (SAB)

C’D’ \( \subset \) (SCD)

Suy ra giao tuyến \(\Delta \) của (SAB) và (SCD) song song với A’B’ và C’D’.

Mặt khác: 

\(\left. \matrix{
AB//CD \hfill \cr
AB \subset \left( {SAB} \right) \hfill \cr
CD \subset \left( {SCD} \right) \hfill \cr} \right\} \Rightarrow \Delta //AB//CD\) 

Advertisements (Quảng cáo)

Vậy A’B’ // AB \( \Rightarrow \) A’B’ // (ABCD) (1)

Chứng minh tương tự, ta có

A’D’ // AD \( \Rightarrow \) A’D’ //(ABCD) (2)

Từ (1) và (2) suy ra (P) // (ABCD).

- Giả sử (P) // (ABCD).

Khi đó hai mặt phẳng (P) và (ABCD) bị mặt phẳng (SAB) cắt theo hai giao tuyến A’B’ và AB song song

Tương tự, ta có:

C’D’ // CD

B’C’ // BC

A’D’ // AD

Suy ra: A’B’ // C’D’ và B’C’ // A’D’

Vậy tứ giác A’B’C’D’ là hình bình hành.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)