Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 5.1 trang 178 sách bài tập Đại số và Giải tích...

Câu 5.1 trang 178 sách bài tập Đại số và Giải tích 11 Nâng cao: Cho hàm số, chứng minh rằng...

Cho hàm số, chứng minh rằng. Câu 5.1 trang 178 sách bài tập Đại số và Giải tích 11 Nâng cao - Bài 1: Khái niệm đạo hàm

Cho hàm số

\(y = \root 3 \of x \)

Chứng minh rằng: \(y’\left( x \right) = {1 \over {3\root 3 \of {{x^2}} }}\,\,\left( {x \ne 0} \right)\)

Với mỗi \(a \ne 0,\) ta tính đạo hàm của hàm số \(y = \root 3 \of x \) tại điểm theo định nghĩa

- Tính \(\Delta y\)

Advertisements (Quảng cáo)

\(\Delta y = \root 3 \of {x + \Delta x} - \root 3 \of x \)
\( = {{\left( {\root 3 \of {x + \Delta x}  - \root 3 \of x } \right)\left( {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}}  + \root 3 \of {x\left( {x + \Delta x} \right)}  + \root 3 \of {{x^2}} } \right)} \over {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}}  + \root 3 \of {x\left( {x + \Delta x} \right)}  + \root 3 \of {{x^2}} }}\)

\(= {{\Delta x} \over {\root 3 \of {{{\left( {x + \Delta x} \right)}^2}} + \root 3 \of {x\left( {x + \Delta x} \right)} + \root 3 \of {{x^2}} }}  \)

- Tìm giới hạn

 \(\mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over {\root 3 \of {\left( {x + \Delta x} \right)^2}  + \root 3 \of {x\left( {x + \Delta x} \right) + \root 3 \of {{x^2}} } }} = {1 \over {3\root 3 \of {{x^2}} }} \)

\(= y’\left( x \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)