Trang chủ Lớp 11 SBT Toán 11 Nâng cao Câu 5.4 trang 179 Sách Toán Đại số lớp 11 SBT Nâng...

Câu 5.4 trang 179 Sách Toán Đại số lớp 11 SBT Nâng cao: Cho parabol (C) có phương trình y = f (x) = kx2...

Chia sẻ
Cho parabol (C) có phương trình

y = f (x) = kx2 (k là hằng số khác 0). Câu 5.4 trang 179 sách bài tập Đại số và Giải tích 11 Nâng cao – Bài 1: Khái niệm đạo hàm

Cho parabol (P) có phương trình

                    y = f (x) = kx2  (k là hằng số khác 0)

Và A là một điểm thuộc (P) có hoành độ là \(a\ne 0\) .

Hãy xác định các tọa độ giao điểm của trục Ox với tiếp tuyến tại A của (P). Từ đó hãy suy ra một cách đơn giản để vẽ tiếp tuyến này.

Giải

Ta có

                        \(y’ = 2kx\,\,\left( {\forall x \in R} \right)\)

Phương trình tiếp tuyến tại điểm \(A\left( {a;k{a^2}} \right)\) của parabol (P) là

                        \(y = 2ka\left( {x – a} \right) + k{a^2} = 2kax – k{a^2}\,\)

Gọi I là giao điểm của tiếp tuyến này với trục Ox. Hoành độ điểm I là nghiệm của phương trình

                        \(2kax – k{a^2}=0 \Leftrightarrow x = {a \over 2}\)(vì \(ak \ne 0\))

Suy ra \(I\left( {{a \over 2};0} \right)\)

Từ đó để vẽ tiếp tuyến tại điểm  \(A\left( {a;k{a^2}} \right)\) của parabol (P), ta nối điểm A với điểm \(I\left( {{a \over 2};0} \right)\); đường thẳng AI là tiếp tuyến cần phải tìm.